Ecological Filtration Systems: Using Freshwater Mussels to Reduce Pollutants

Sai Khay ${ }^{1}$, Jessica M. Wilson ${ }^{1}$, Alex Byrne ${ }^{2}$, John Butler ${ }^{2}$, Mary Ng 1
${ }^{1}$ Department of Civil and Environmental Engineering, Manhattan College
${ }^{2}$ Van Cortlandt Park Alliance (formerly Friends of Van Cortlantdt Park)

Van Cortlandt Lake

Van Cortlandt Lake

Classificatio

Freshwater wetland

Class B Waterbody (NYS DEC) Public swimming and contact recreation activities

Hypereutrophic
Total phosphorus $\boldsymbol{>} 0.20 \mathrm{mg} / \mathrm{L}$

Remediation Efforts
20,000 cubic yards of sediment removed in 2001

Objective

Evaluate sustainable bioremediation options for Van Cortlandt Lake

Approach

Evaluate freshwater mussels for potential to remove pollutants, phosphorus and turbidity

ACS News Service Weekly PressPac: November 08, 2017

Cleaning up aquatic pollution with mussels

"Cultivation of the Ribbed Mussel (Geukensia demissa) for Nutrient Biaextraction in an Urban Estuary"
Environmental Science \& Technology

Scientists and activists alike have been looking for a solution to the problem of aquatic nutrient pollution. Now one group reports in Environmental Science \& Technology that ribbed mussels are up to the clean-up challenge.

When it comes to nutrients, like nitrogen and phasphorus, too much of a good

The ribbed mussel could help clean up excess nitrogen and pollution from water oan Viuler/NOAA Photo Library/License

Method

Elliptio

Complanata

Average Mussel Profile

Weight: 59 g
Length: 16 cm
Width: 4 cm
Height: 3 cm

Method

Measurements

Water Quality

Temperature
pH
Dissolved oxygen
Conductivity
Turbidity
Nutrients
Total phosphorus
Ammonia
Nitrate

Experiment 1

Phosphorus Removal (6 Hours)

Materials

8 mesocosms (1 mussel each)
1 mesocosm (control; no mussels) Phosphorus at varying concentrations

Removal

Control $=0.0067 \mathrm{mg} / \mathrm{L}-\mathrm{hr}$
Mesocosm $=0.022 \mathrm{mg} / \mathrm{L}-\mathrm{hr}$
Higher average rate of phosphorus removal for experimental mesocosms

Experiment 2

Phosphorus Removal (7
 Days)

Materials

2 mesocosms (1 mussel each)
2 mesocosms (control; no mussels) 1 tank (10 mussels)
Phosphorus at varying concentrations

Removal

Control < $0.001 \mathrm{mg} / \mathrm{L}-\mathrm{hr}$ (no removal) Tank $=0.032 \mathrm{mg} / \mathrm{L}-\mathrm{hr}$
Mesocosms $=0.021 \mathrm{mg} / \mathrm{L}-\mathrm{hr}$
(Comparable to Exp. 1)
Higher rate of phosphorus removal for tank mesocosms when compared to control

Experiment 3

Turbidity Removal (3
 days)

Materials

2 mesocosms (1 mussel each)
2 mesocosms (control; no mussels) Kaolin clay

Removal
Control $=23 \%$ removal
Mesocosm $=56 \%$ removal

Higher average amount of turbidity removed for experimental than control

Summary

Bioremediation may be a viable option for phosphorus and turbidity removal

Research ongoing for effect of other water quality parameters (e.g., pH , nitrate) on pollutant removal

Acknowledgements

John D. Mahony Fund for Undergraduate Research
Civil and Environmental Engineering, Manhattan College
Student Researchers: Liz Marie Lee, Lauren Finnegan, Gregory Santoro
Bronx Council for Environmental Quality (BCEQ)

