Using Python Code to Create Point Shapefiles from
1Naturalist Observation Data Tables
Obtaining the Data Table:

1. If you’ve already done this, you can skip to the next section. Otherwise, continue. It is
important when using the code to generate point shapefiles that the table you use is
organized the same way as the one used when the code was made. Otherwise the code
will likely not work. Go to the iNatualist project at
https://www.inaturalist.org/projects/van-cortlandt-park-biodiversity-project?tab=observati
ons and click on the “Export Observations” button.

2. Leave the first sections as default.

3. Scroll down to the “Taxon Extras” section and make sure to select all options like in
image 1. Then select “Create Export.”

Image 1:
Taxon Extras (All | Mone)
Mote: these columns will slow down the generation of your export
taxon_kingdom_name taxon_phylum_name taxon_subphylum_name taxon_superclass_name
taxon_class_name taxon_subclass_name taxon_superorder_name taxon_order_name
taxon_suborder_name taxon_superfamily_name taxon_family_name taxon_subfamily_name
taxon_supertribe_name taxon_tribe_name taxon_subtribe_name taxon_genus_name
taxon_genushybrid_name taxon_species_name taxon_hybrid_name taxon_subspecies_name
taxon_variety_name taxon_form_name

Observation Fields (all | None)

4 Create Export

4. It may take a very long time sometimes for the table to be exported. Select the “receive
an email with your data” button and allow the export to load until it is ready.

5. When the export is ready in iNaturalist or has been emailed to you, download the table
and save it as a .csv file. This table has data on all of the current VCP iNaturalist
Biodiversity Project species observations since the date of exporting. This process will
need to be repeated to update the table with new observations in the future.

Opening Code in Python:

6. Open ArcMap.

https://www.inaturalist.org/projects/van-cortlandt-park-biodiversity-project?tab=observations
https://www.inaturalist.org/projects/van-cortlandt-park-biodiversity-project?tab=observations

7.

Select “Geoprocessing” in the top menu bar. Then click on “Python” to open a small,
blank window for the program to be put into.

Right click on the white space in the new window and select “Load...” Then find the
saved code you are using and open it. This will fill the new window with the code you
selected.

Changing File Locations in the Code:

9.

10

11.

12.

13.

You will only need to do these steps once for each new computer the code is used on. If
you’ve already done this once on your computer, you can skip to the next section.

. You need to change the file locations and file names for the items needed for this process

since they will likely be different from the ones on the code maker’s computer. This can
be done in the python window in ArcMap.

Image 2 is the python window expanded. What is highlighted in green are the file
locations in the code that need to be changed. There are three that need to be changed.
The first one should be changed to the file location where you have the csv table
downloaded from iNaturalist saved. The second one should be changed to the file
location where you wish to save the new point shapefile the code will create. Lastly, the
third one needs to be changed to the file location where the point shapefile was saved
(same as the second highlighted file location).

Make sure everything that comes before and after the changes you made stays exactly the
same. This means there should still be an r’ in the front and a \\ at the end of every new
file location.

Save the code so you don’t have to change these every time. Do this by right clicking on
anywhere in the white space of the python window. Then click “Save as...” Choose
where you want to save this code to use again in the future. I don’t recommend
overwriting just incase a mistake was made and you need to start over.

Changing Variables in the Code:

14.

15.
16.

You now need to change the variables in the beginning of the code. These are used to tell
the program what species/taxon group you want it to make a shapefile for.

Image 2 shows what needs to change here in yellow highlighting.

The yellow highlights in the first line need to be changed to what data in the iNaturalist
table you want to make the point shapefile for. The first highlight in this line is for the
column of the table. You will need to change the highlighted portion to the correct taxon
column. So if you are interested in an order of organisms, this will be changed to “order”.
In the other highlighted part of the first line, you need to change it to the name of the
organism/group that is found in the data under the table column of interest. This will be
what the points in the shapefile are showing. So this could be changed to something like
“Hymenoptera”. So for example, this first line may be changed to read:

taxon query = "\"taxon_order name\" = 'Hymenoptera"

This will make a point shapefile showing all observations of Order Hymenoptera. Every
change in this part needs to match exactly what is in the table columns and data, including
capitalization, symbols, spelling, etc. If not, the code will not work.

17. The second line with yellow highlighting is what names the new shapefile. Here you can
change the highlighted portion to what you want the shapefile to be named in your
computer.

18. The third line with yellow highlighting tells the program what the name of the iNaturalist
table is that you are using. You will not need to change this every time. You only need to
change it if it is your first time using the code, or the name of the table has changed.
Change the highlighted portion to be the name of the table you want to use from your
computer. Again, make sure this table is saved as a csv.

Running the code:

19. You can now run the code to make the shapefile. Scroll down to the bottom of the python
window and click the cursor on the end of the last line of the code. Hit the enter key and
the code will start to make the shapefile. This will take a moment.

20. You should now have a point shapefile of the organism/s specified in the variables.

21. The code may take a while to set up and get used to, but will speed up the process a lot.

>>> ¢
.l taxon guery = "\"taxon_ L name\" =
. .Dshapefile_name = " i2"

. .Robservation_table = ™ i p21"

mxd = arcpy.mapping.MapDocument ("CURRENT")
df = arcpy.mapping.ListDataFrames (mxd, "Layers")[U]
addtable = arcpy.mapping. TableVlew(r'“' U . D

aZDocuments

uralist _"_a\\ + observatlon table +".csv")

:----'—\-;--——v- = -|_

arcpy.mapping. AddTableVlew(df, addtable)
arcpy.RefreshToOC ()
arcpy.MakeX¥YEventLayer management (cbservation table, 'longitude', 'latitude', 'XY Layer', "GEOGCS

[GCS North American 1983',DATUM['D North American 1583', SPHEROID['GRS_

1980',6378137.0,298.257222101]1, PRIMEM[' Greenwich', 0.0],UNIT['Degree',0.0174532925199433]1];-400 —400

1000000000;-100000 10000;-100000 10000;8.98315284119521E-09;0.001;0.001;IsHighPrecision™, '#')
arcpy.MakeFeatureLayer management ("XY Layer', 'Taxon Layer', taxon guery, '#', 'id id VISIBLE

NONE;cobserved on_string cbserved on_string VISIBLE NONE;observed on observed on VISIBLE

MONE; time_ ocbserved_at time observed at VISIBLE NONE;time zone time_ zone VISIBLE NONE;user_ id user_id

VISIBLE NONE;user_ login user login VISIBLE NONE;created_at created at VISIBLE NONE;updated at

updated_at VISIBLE NONE;quality grade guality grade VISIBLE NONE;license license VISIBLE NONE;url

url VISIBLE NONE;image url image url VISIBLE NONE;sound url sound url VISIBLE NONE;tag list tag list

VISIBLE NONE;description description VISIBLE NONE;num identification agreements

num identification agreements VISIBLE NONE;num identification disagreements

num identification disagreements VISIBLE NONE;captive cultivated captive_ cultivated VISIBLE

NONE; cauth application_id cauth application_id VISIBLE NONE;place guess place guess VISIBLE

NONE;latitude latitude VISIBLE MONE;longitude longitude VISIBLE NONE;positional accuracy

positional accuracy VISIBLE NONE;public positional accuracy public positional accuracy VISIBLE

NONE; geoprivacy geoprivacy VISIBLE NONE;taxon geoprivacy taxon geoprivacy VISIBLE

NONE; coordinates obscured coordinates obscured VISIBLE NONE;positioning method positioning method

VISIBLE NONE;positioning device positioning device VISIBLE NONE;species guess species_guess VISIBLE

NONE; scientific_name scientific name VISIBLE NONE;common name common name VISIBLE

NONE;iconic_taxon name iconic_taxon name VISIBLE NONE; taxon id taxon_id VISIBLE

NONE; taxon kingdom name taxon kingdom name VISIBLE NONE;taxon phylum name taxon phylum name VISIBLE

NONE; taxon_ subphylum name taxon subphylum name VISIBELE NONE;taxon superclass name

taxon_superclass_name VISIBLE NONE;taxon class_name taxon class_name VISIBLE

NONE; taxon_ subclass_name taxon subclass name VISIBLE NONE;taxon superorder name

taxon superorder name VISIBELE NONE;taxon order name taxon order_ name VISIBLE

NONE; taxon suborder name taxon suborder name VISIBLE NONE; taxon superfamily name

taxon superfamily name VISIBLE NONE; taxon family name taxon family name VISIBLE

NONE; taxon subfamily name taxon_subfamily name VISIBLE NONE;taxon_ supertribe name

taxon_ supertribe name VISIBLE NONE;taxon_tribe name taxon_tribe name VISIBLE

NONE; taxon subtribe name taxon subtribe name VISIBLE NONE;taxon_genus_name taxXon_genus_name VISIBLE

NONE; taxon genushybrid name taxon genushybrid name VISIBLE NONE; taxon species name

taxon species _name VISIBLE NONME;taxon_ hybrid name taxon hybrid name VISIBLE

NONE; taxon subspecies name taxon subspecies name VISIBLE NONE;taxon variety name taxon variety name

VISIBLE NONE;taxon_form name taxon form name VISIELE NONE Shape Shape VISIBLE NONE J
arcpy PrOJect management(Taxon Layer' r'c = ! =ge

nCc 1 s i o) v ._“_4\\ + shapefile_: name, " S['NAD_
1983_ StatePlane New_ York Long Island FIPS_ 3104 _Feet', GEOGCS[GCS_North American 1983', DATUM
[’ D_North_Amerlcan_lSBB',SPHEROID[GRS_lSBU' 63?813?.0 298.25?222101]],PRIMEM[Greenwich',0.0],UNIT
['Degree',0.01745325251%%433]], PROJECTION|['Lambert Conformal Conic'], PARAMETER
['False Easting',984250.0], PARAMETER['False Northing',0.0],PARAMETER['Central Meridian', -
74.0],PRRREMETER['Standard_Parallel 1',40.66666666666666], PARAMETER['Standard Parallel
2',41.03333333333333],PARAMETER['Latitude Of Origin',40.16666666666666],UNIT
['Foot_US',0.304800609%6012192]]"™, '#', "GEOGCS['GCS North American 1%83',DATUM['D North American
1%83',SPHEROID['GRS_1%80',6378137.0,298.257222101]], PRIMEM['Greenwich', 0.0],UNIT
['Degree',0.0174532925199433]]", 'NO_PRESERVE SHAPE', '#', 'NO VERTICAL')

arcpy.Delete management ('XY Layer', '#')

arcpy.Delete management ('Taxon Layer', '#')

mxd = arcpy.mapping.MapDocument ("CURRENT")
df2 = arcpy.mapping. LlstDataFrames(mxd)[U]
addshp = arcpy mapplng Layer(r s\JC

Biodiversity oject

s S = = .shp')
arcpy. mapplng AddLayer(deJr addshp, "BOTTOM")

